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Abstract. The replica method is applied to a neural network model with state-dependent synapses
built from those patterns having a correlation with the state of the system greater than a certain
threshold. Replica-symmetric and first-step replica-symmetry-breaking results are presented for
the storage capacity at zero temperature as a function of this threshold value. A comparison is
made with existing results based upon mean-field equations obtained by using a statistical method.

1. Introduction

It is now standard knowledge that for the Hopfield model [1] the Hebb rule leads to a critical
storage capacityαc = 0.138 [2] while for these type of models with quadratic interaction
the optimal storage capacity isαc = 2 [3]. This is due to the fact that the contribution of the
noise caused by the weakly correlated patterns becomes larger than the signal of the condensed
patterns asα increases. In order to lift this limitation of the Hebb rule a model with state-
dependent synapses has been recently discussed [4, 5]. Thereby, the idea is to introduce a
thresholdη cutting out of the Hebb rule all patterns whose correlations with the state of the
system are smaller than this threshold [5]. These authors propose an energy function for
this state-dependent synapse (SDS) model and derive the corresponding fixed-point equations
using the so-called heuristically motivated statistical mean-field scheme developed in [6, 7]
(see also [8]). In the case of the Hopfield model (η = 0) this statistical derivation leads to the
same results as those derived using a replica symmetric (RS) mean-field theory approach [2].
Solving these fixed-point equations one finds, for example at zero temperature, an increase in
the storage capacity fromαc = 0.138 forη = 0 up to, e.g.,αc = 0.17 for η = 1. A similar
effect has been found for the recognition of temporal sequences [9] and for non-monotonic
Hopfield models [10].

In this paper we apply the replica method to the zero-temperature capacity problem of
the SDS model. Thereby, the aim is twofold. First we want to find out whether the RS fixed-
point equations derived by the standard replica approach again coincide with the fixed-point
equations found with the statistical method. Second, since we expect that the RS results are
unstable at zero temperature, we want to determine the effects of first-step replica-symmetry
breaking (RSB1) on the capacity.

§ E-mail address:desire.bolle@fys.kuleuven.ac.be
‖ E-mail address:gmshim@nsphys.chungnam.ac.kr
¶ E-mail address:bart.vanmol@fys.kuleuven.ac.be

0305-4470/99/183201+07$19.50 © 1999 IOP Publishing Ltd 3201



3202 D Bollé et al

Somewhat surprisingly, we find that the RS fixed-point equations are different from the
results obtained in [5]. This is due to the fact that forη 6= 0 the assumptions made in [5] that
both the overlap with the non-condensed patterns as well as the noise induced by these non-
condensed patterns have a Gaussian distribution are incompatible. Keeping only the (standard)
assumption that the noise is Gaussian we can improve the calculations using the statistical
scheme and show agreement with the RS approach. Furthermore, in an RSB1 treatment the
critical storage capacity increases versus the RS values but up toη = 1 the increase is relatively
small.

The rest of this paper is organized as follows. In section 2 the SDS model is quickly
reviewed. In section 3 the RS approach to this model at zero temperature is outlined and
a detailed comparison with the statistical method used in [5] is made. Section 4 contains a
discussion of the RSB1 solution. Some concluding remarks are given in section 5.

2. The SDS model

Consider a network ofN neurons which can take the values±1 with equal probability. In this
network we want to storep = αN patternsξµi = ±1, i = 1, 2, . . . , N,µ = 1, 2, . . . , p that
are supposed to be independent and identically distributed random variables with probability
distribution Pr(ξµi ) = 1

2δ(ξ
µ

i − 1) + 1
2δ(ξ

µ

i + 1).
Given a configurationσ = (σ1, . . . , σN), the local fieldhi of neuroni is

hi(σ) =
∑
j 6=i

Jij σj (1)

whereJij are the synaptic couplings given by

Jij = 1

N

αN∑
µ=1

ξ
µ

i ξ
µ

j 2

(
(mµ)2 − η

2

N

)
(2)

with mµ the usual overlap order parameters defined by

mµ ≡ 1

N

N∑
i=1

ξ
µ

i σi (3)

andη > 0 the threshold parameter. Due to the presence of the step function2(·) only those
terms where(mµ)2 > η2/N contribute to the synaptic couplings. At this point we remark that
the learning rule (2) requires that at each time step the actual neuron state has to be compared
with every stored pattern in order to determinemµ. For further motivation and discussion of
this learning rule and also for numerical simulations of the model we refer to [4,5,9,10].

The neurons are updated asynchronously according to the well known Glauber dynamics.
We are interested in the zero-temperature limit of this dynamics, which can be written as

σi(t + 1) = sgn[hi(σ(t))]. (4)

For this deterministic dynamics an energy function was found in [5]

H = −N
2

∑
µ

(
(mµ)2 − η

2

N

)
2

(
(mµ)2 − η

2

N

)
. (5)

3. A replica approach

The energy function (5) has been used in [5] to derive fixed-point equations for the relevant
order parameters using the statistical mean-field scheme [6, 7]. The key idea of the latter
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calculation is to assume that the noise to which the small overlaps with the non-condensed
patterns add up is Gaussian.

In the following we apply the replica approach [2,8] at zero temperature up to first-order
breaking and compare our results with the statistical scheme.

3.1. Replica symmetric results

Following the standard approach we calculate the RS free energy per neuron for the SDS model
at zero temperature as the limitβ → ∞, with β the inverse temperature, of its temperature
dependent form. For the latter we obtain as a function of the usual order parameters, i.e., the
overlap,m1 = m, with the condensed patternµ = 1, the Edwards–Anderson order parameter,
q, and the residual overlap,r, with the non-condensed patternsµ > 2,

f (RS)(m, r, q, β) = f (RS)0 (m, r, q, β) + f (RS)η (q, β) (6)

where

f
(RS)
0 (m, r, q, β) = m2

2
+

1

2
αβr(1− q) +

α

2β

[
ln(1− β(1− q))− βq

1− β(1− q)
]

− 1

β

∫
Dz ln[2 coshβ(m +

√
αrz)] (7)

f (RS)η (q, β) = α

2
η2 − α

β

∫
Dz ln

[
1− 1

2
erf(φ+(β))− 1

2
erf(φ−(β))

+
1

2

√
1− β(1− q) exp

(
β

2

(
η2 − qz2

1− β(1− q)
))

×(erf(φ+(0)) + erf(φ−(0)))
]

(8)

with

φ±(x) =
[1− x(1− q)]η ±√qz√
2(1− q)(1− x(1− q)) (9)

and Dz = dz (2π)(−1/2) exp(−z2/2). In the abovef (RS)0 (·) is the free energy corresponding
to the Hopfield model (η = 0) while f (RS)η (·) reflects the effect of the removal of the non-
condensed patterns having a small correlation with the state of the system. Furthermore, the
fixed-point equations are given by

m =
∫

Dz tanhβ(m +
√
αrz) (10)

q =
∫

Dz tanh2 β(m +
√
αrz) (11)

r = q

[1− β(1− q)]2
+

2

αβ

∂

∂q
f (RS)η (q, β). (12)

In the limitη→ 0 we find back the fixed-point equations for the Hopfield model, as we should.
Furthermore, the change in the Hebb rule realized in equation (2) manifests itself explicitly only
in the order parameterr as one would expect. For zero temperature the fixed-point equations
(10)–(12) reduce to

m = erf

(
m√
2αr

)
(13)
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r = 1

(1− c)2
[

1− erf

(√
1− c

2
η

)
+

√
2(1− c)
π

η exp

(
−1

2
(1− c)η2

)]
(14)

c = lim
β→∞

β(1− q) =
√

2

παr
exp

(
− m

2

2αr

)
. (15)

These results have to be compared with the statistical mean-field scheme of [5]. But first we
check the RS stability of this solution (13), (14) by calculating, as an indication, the entropy
of the RS phase. We find

S = S0 + Sη (16)

where

S0 = −α
2

[
ln(1− c) +

c

1− c
]

(17)

Sη = α

2
ln(1− c)erf

(√
1− c

2
η

)
− αc

(1− c)2
[√

1− c
2π

η exp

(
−1

2
(1− c)η2

)

− c

2
erf

(√
1− c

2
η

)]
. (18)

Again in the limitη → 0 the expression (16) reduces to the entropy of the Hopfield model
(17) as given, e.g., in [2]. As shown in figure 1, the entropy for the SDS model is negative for
all values ofη indicating RS breaking. We remark that forη→∞ the entropy goes to−∞ as
−η−1 exp(η2/2). To get an idea about the size of the breaking as a function ofη a first-order
approximation (RSB1) is performed in section 3.3.

3.2. Comparison with the statistical scheme

Comparing the fixed-point equations (13), and (14) with those of the statistical mean-field
scheme derived in [5] (see equations (23)–(26)) we find that they are different as soon as
η 6= 0. This is illustrated by figure 2. It contrasts the situation for the Hopfield model where
it is argued [6] that the key assumption in the statistical approach mentioned above—the
noise to which the small overlaps with the non-condensed patterns add up is Gaussian—
oversimplifies and is most probably responsible for obtaining the results corresponding to the

Figure 1. The RS entropyS at zero temperature as a function of the thresholdη.
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Figure 2. The critical capacity in the RS (full curve) and RSB1 (dotted curve) approximation as a
function of the thresholdη. For comparison we also show the results of [5] (dashed-dotted curve).

RS approximation. The reason that there is no such correspondence here is that the derivation
in [5] not only invokes this key assumption but furthermore supposes that the overlap with the
non-condensed patterns themselves, i.e., the〈mµN 〉, µ = 2, . . . , p = αN where the brackets
〈·〉 indicate the thermal average, have an identical normal distribution with mean zero and
varianceσ 2/N . (For convenience we write down explicitly theN -dependence in this section.)
These two assumptions are incompatible forη 6= 0. Indeed, following closely the derivation
in [5,6] by starting from the mean-field equations for the thermal average of the overlap with
a non-condensed pattern,〈mνN 〉, and expanding it in a Taylor series to first order we arrive at[

1− β(1− qN)2
(
〈mνN 〉2 −

η2

N

)]
〈mνN 〉 = XN (19)

with

XN = 1

N

N∑
j=1

ξνj ξ
1
j tanhβ(mN + ηνN,j ) (20)

qN = 1

N

N∑
j=1

tanh2β(mN + ηνN,j ) (21)

ηνN,j =
∑
µ6=1,ν

ξ
µ

j ξ
1
j 〈mµN 〉2

(
〈mµN 〉2 −

η2

N

)
. (22)

HereηνN,j is the noise part and we recall that〈m1
N 〉 ≡ mN is the overlap of the network

with the condensed pattern 1. This expression shows that in the limitN → ∞ the relation
between the distributions for the random variables〈mν〉 andηνj is no longer simply linear
when η 6= 0. In fact, starting from the key assumption that the noise has a Gaussian
distribution, i.e.,ην ∼ N (0, αr) we find from (20) using the central limit theorem that
limN→∞

√
NXN ∼ N (0, q) with q the limit of (21), which is equal to equation (11).

Furthermore, according to equation (19) we see that〈mνN 〉 is a multi-valued function of the
XN . Employing a standard geometrical Maxwell construction we obtain

√
N〈mνN 〉 =


√
NXN

1− β(1− qN) |√NXN | >
√

1− β(1− qN)η
√
NXN |√NXN | <

√
1− β(1− qN)η.

(23)
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The expression (23) clearly shows that the overlaps with the non-condensed patterns are not
Gaussian distributed in the limitN → ∞. Using the correct distribution we precisely find
equation (14) for the order parameterr in the zero-temperature limit. Hence, we have shown
complete equivalence between the statistical mean-field scheme using only the key assumption
that the noise is Gaussian distributed, and the RS results.

3.3. First-step breaking results

From the observation on the entropy given in section 3.1 we expect RSB effects. In order to get
an idea about the size of these effects with growingη we apply RSB1. We follow the standard
approach (see, e.g., [11]) by introducing the order parameters

mµα = mµ ∀α = 1, . . . , n
qαγ = (1− q1)δαγ + (q1− q0)εαγ + q0

rαγ = (1− r1)δαγ + (r1− r0)εαγ + r0
∀α, γ = 1, . . . , n

(24)

with n the number of replicas and{εαγ }, ∀α, γ = 1, . . . , n a(n×n)-matrix with elements one
insiden/k diagonal blocks of sizek and zero outside these blocks.

The free energy per neuron can then be obtained after some tedious calculations

f (RSB1)(m, q0, q1, r0, r1, k, β) = f (RSB1)
0 (m, q0, q1, r0, r1, k, β) + f (RSB1)

η (q0, q1, k, β) (25)

where the first term is given by

f
(RSB1)
0 (m, q0, q1, r0, r1, k, β)

= 1

2
m2 − ln 2

β
− 1

2
αβ[kq0r0 + (1− k)q1r1− r1] +

α

2β
ln[1− β(1− q1)]

− 1

kβ

∫
Dz1 ln

{∫
Dz2 coshk

[
β

(
m +
√
αr0z1 +

√
α(r1− r0)z2

)]}
(26)

and the second term reads

f (RSB1)
η (q0, q1, k, β) = α

2
η2 − α

βk

∫
Dz1 ln

∫
Dz2

×
{

exp

[
βz2

2(1− β(1− q1))

] [
1− 1

2
erf(ψ+(β))− 1

2
erf(ψ−(β))

]
+

1

2

√
1− β(1− q1) exp

(
β

2

(
η2 − z2

1− β(1− q1)

))
×(erf(ψ+(0)) + erf(ψ−(0)))

}k
(27)

with

ψ±(x) = [1− x(1− q1)]η ± z√
2(1− q1)(1− x(1− q1))

z = √q0 z1 +
√
q1− q0z2. (28)

In the limitη→ 0 the expression reduces to the Hopfield RSB1 free energy as calculated, e.g.,
in [12–14].

Again in the following we are only interested in the zero-temperature results. From the
limit β → ∞ of expression (27) we can obtain the fixed-point equations for the relevant
order parameters. Since the way to derive these formula is standard and since their explicit
expressions are algebraically complicated we do not write them down.

The zero-temperature critical capacityα(RSB1)
c as a function ofη is presented in figure 2.

For η = 0 we confirm the resultα(RSB1)
c = 0.138 19 found in [13, 14]. For growingη the
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results forα(RSB1)
c andα(RS)c start deviating more. In view of the results on the entropy (see

figure 1) we expect that the difference keeps growing. Since the calculations are very tedious
and since in the literature one is mostly interested in values ofη smaller than one [5, 9, 10]
we have plotted results up toη = 1. Forη = 1, e.g., we find 0.166 58 for the RSB1 critical
capacity versus 0.163 84 for the RS critical capacity. The results of [5] overestimate this value.

4. Concluding remarks

The replica method is applied to an existing neural network model with state-dependent
couplings. Only those patterns having a correlation with the state of the system greater than a
thresholdη contribute to the couplings.

The free energy is obtained and the fixed-point equations are studied at zero temperature.
It is shown that the fixed-point equations in the RS approximation coincide with these found by
the so-called heuristically motivated statistical mean-field scheme developed in [6,7], provided
one does not make the additional assumption that the overlap with the non-condensed patterns
is Gaussian. This assumption, made in the literature, is totally unnecessary and is even
incompatible with the key assumption of the statistical method that the noise induced by
the non-condensed patterns is Gaussian.

The critical storage capacity at zero temperature is calculated as a function of the threshold
η and compared with the values obtained in the literature on the basis of the statistical method
with the extra Gaussian assumption for the overlaps. Since a calculation of the entropy indicates
that replica symmetry is broken at zero temperature for all values ofη a first-order RSB
calculation has been performed. The critical storage capacity increases versus the RS values
but up toη = 1 the increase is relatively small.
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[11] Mézard M, Parisi G and Virasoro M A 1978Spin Glass Theory and Beyond(Singapore: World Scientific)
[12] Crisanti A, Amit D J and Gutfreund H 1986Europhys. Lett.2 337
[13] Steffan H and K̈uhn R 1994Z. Phys.B 95249
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